Gaussian Variational Approximate Inference for Generalized Linear Mixed Models

نویسندگان

  • J. T. Ormerod
  • M. P. Wand
چکیده

Variational approximation methods have become a mainstay of contemporary Machine Learning methodology, but currently have little presence in Statistics. We devise an effective variational approximation strategy for fitting generalized linear mixed models (GLMM) appropriate for grouped data. It involves Gaussian approximation to the distributions of random effects vectors, conditional on the responses. We show that Gaussian variational approximation is a relatively simple and natural alternative to Laplace approximation for fast, non-Monte Carlo, GLMM analysis. Numerical studies show Gaussian variational approximation to be very accurate in grouped data GLMM contexts. Finally, we point to some recent theory on consistency of Gaussian variational approximation in this context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Gaussian Kullback-Leibler approximate inference

We investigate Gaussian Kullback-Leibler (G-KL) variational approximate inference techniques for Bayesian generalised linear models and various extensions. In particular we make the following novel contributions: sufficient conditions for which the G-KL objective is differentiable and convex are described; constrained parameterisations of Gaussian covariance that make G-KL methods fast and scal...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

The Variational Gaussian Process

Variational inference is a powerful tool for approximate inference, and it has been recently applied for representation learning with deep generative models. We develop the variational Gaussian process (VGP), a Bayesian nonparametric variational family, which adapts its shape to match complex posterior distributions. The VGP generates approximate posterior samples by generating latent inputs an...

متن کامل

Variational Gaussian Process

Variational inference is a powerful tool for approximate inference, and it has been recently applied for representation learning with deep generative models. We develop the variational Gaussian process (VGP), a Bayesian nonparametric variational family, which adapts its shape to match complex posterior distributions. The VGP generates approximate posterior samples by generating latent inputs an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016